国产精品专区免费,亚洲国产一区二区三区高清,日韩精品免费一区二区夜夜嗨,中出一区二区

HOMENewsPR NewswireText

TencentDB TDStore Online DDL: Technological Evolution and Innovations Background & Challenges

Apr 22, 2025

SHENZHEN, China, April 22, 2025 /PRNewswire/ -- Traditional single-node databases (e.g., MySQL) use OnlineDDL and third-party tools (e.g., pt-osc) to enable lock-free schema changes, but face performance bottlenecks and struggle in distributed environments. Tencent Cloud's TDStore, a financial-grade distributed database, addresses these challenges with groundbreaking innovations:

Core Technological Innovations

1.  Multi-Version Schema Mechanism

a. Introduces schema versioning to enable metadata-only modifications in seconds (e.g., adding trailing columns, extending fields). Historical data automatically fills default values, ensuring backward compatibility.

2.  Concurrency Control & State Transition

a.  Thomas Write Rule: Reduces transaction conflicts by ignoring stale writes, improving DDL-DML parallelism.
b.  Google F1 Phased State Design: Divides DDL into three stages (delete-only → write-only → final)  to ensure global consistency and smooth transitions.

3. Write Fence Mechanism

a. Validates request versions at the storage layer, allowing writes only between adjacent states to eliminate data inconsistency risks.

4.  Fast OnlineDDL Acceleration

a.  Distributed Parallel Backfilling: Splits data into SST files for multi-node parallel ingestion via bulk load, bypassing timestamp comparisons to achieve 13x performance gains (10 minutes vs. 2.3 hours).

Practices & Optimizations

1. Performance Comparison

a. Traditional Mode (single-node): 16 threads took 2.3 hours.
b.  Fast Mode (multi-node): 48 threads completed in 10 minutes, showcasing significant efficiency improvements.

2. Partitioning Best Practices

a. Large Tables: Use HASH/KEY partitioning to distribute data evenly, enabling parallel DDL execution.
b. Cold/Hot Separation: Combine RANGE+HASH secondary partitioning for rapid cleanup and elastic scaling.
c. High Concurrency: Align partition keys with frequent query fields; set partition count as multiples of node numbers.

3.  Key Parameter Configuration

a. max_parallel_ddl_degree: Increase parallel threads (≤ total node CPUs).
b. tdsql_ddl_fillback_mode:  Enable IngestBehind mode to unlock multi-node parallel acceleration.

Business Value & Future Roadmap

  • Validated Use Cases: Achieved zero downtime in PB-scale financial systems, with 10x faster execution than third-party tools.
  • Upcoming Enhancements:
    • Optimize partitioned table Copy Table and index backfilling for ordinary tables.
    • Support ultra-large-scale (tens of TB) workloads and hybrid HTAP architectures.

Conclusion

TDStore overcomes traditional OnlineDDL limitations through distributed architecture innovations and engineering practices, delivering high-performance, secure, and seamless schema change capabilities for financial-grade scenarios. It empowers enterprises to tackle massive data challenges effectively.

#DistributedDatabase #TencentCloud #TencentDB #TDSQL #Tencent Cloud BigData

Qingdao International Community Center (for Culture and Tourism)

Shinan District, Qingdao

(+86) 0532-68873099

Monday - Friday 9:00am - 5:00pm

Tourism
Attraction
Hotels
Dining
Entrance tickets
Culture
History
Festival
Fashion&Traditions
Culture Figures
Food
Business
Business News
Policies & Regulations
Free Trade Zone
主站蜘蛛池模板: 巫溪县| 汶上县| 长春市| 南郑县| 苍山县| 黎平县| 乌兰察布市| 句容市| 汉中市| 宜城市| 宜州市| 棋牌| 大丰市| 丹巴县| 紫金县| 大足县| 安福县| 获嘉县| 新野县| 三江| 囊谦县| 桐庐县| 秀山| 泰和县| 昌宁县| 宝山区| 开阳县| 页游| 日喀则市| 山东省| 鱼台县| 黄龙县| 西乡县| 郁南县| 博爱县| 喀什市| 长沙市| 新沂市| 民勤县| 福建省| 南安市|